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ABSTRACT 

FORECASTING THE COST OF ELECTRICITY GENERATED BY 

OFFSHORE WIND TURBINES 

MAY 2019 

TIMOTHY TODD COSTA, JR., B.S., UNIVERSITY OF 

MASSACHUSETTS AMHERST 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Erin Baker 

 

To impede the progress of climate change, many policy makers are considering avenues 

to decarbonize electricity production.  In addition to decarbonization, policy makers must 

consider how the cost of electricity will impact various stakeholders, balancing cost and 

social benefits.  Offshore wind farms have the potential to produce affordable, carbon-

free electricity, but they are a relatively new technology. The relative juvenescence of 

offshore wind lends itself to an uncertain future, regarding production costs.  In this 

thesis, we seek to understand cost drivers behind offshore wind electricity by analyzing 

historic trends in offshore wind levelized cost of electricity (LCOE) through learning 

curves, characterizing how learning from producing a technology can lead to decreases in 

production costs.  Additionally, we explore how the maturity of component technologies 

can affect the learning rate, and consequently the benefits of learning, of offshore wind.  

Finally, we create a robust data set to inform decision makers and researchers by 

marrying historic data to forward-looking expert elicitations.  
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CHAPTER 1 

INTRODUCTION 

As human kind continues to grow and prosper, so does our reliance on electricity.  

Traditional sources of electricity, such as coal, oil, and natural gas, produce carbon 

dioxide that pollutes the atmosphere. Since 1950, carbon dioxide levels have increased 

by more than 30% [1,2].  To combat this pollution, policy makers around the world are 

taking steps to promote low-carbon, green technologies [3].   

Among these green technologies, offshore wind turbines have considerable 

potential to produce affordable and efficient electricity.  Compared to onshore wind, 

offshore wind resources tend to be stronger, have fewer geographical issues preventing 

turbine construction, and as populations along the shore grow, so does the coastal 

electricity demand [4].   

The objective of this thesis is to analyze trends in the cost of electricity produced 

by offshore wind turbines, to better understand the drivers of technological change, and 

to support policy decisions.  We begin by building a global experience curve for 

offshore wind.  This experience curve illustrates how the maturation of the technology 

affects its price by comparing the cumulative installed capacity of offshore wind on a 

global scale with the levelized cost of electricity (LCOE).   

We then perform an analysis of offshore wind energy’s sensitivity to the maturity 

of its component technologies.  In many regards, offshore wind energy is like onshore 

wind energy [5,6].  As such, some aspects of offshore wind energy may already be 

mature, and the learning for these technologies may be different than newer technologies 

designed specifically for offshore wind.  Understanding how the different maturities of 
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the technologies affect the cost of wind energy is of vital importance, especially 

regarding research and development investments.  

Finally, we compare the experience curves, which are representations of historical 

data, with expert elicitations, a research method that looks forward in time.  Expert 

elicitations characterize uncertainty better than data sets that describe the past  [7].  By 

combining these two methods, we create a more robust knowledge base that 

incorporates both historical data as well as forward looking studies. 

The rest of the thesis follows as such.  We describe our methodology in Chapter 

2.  In Chapter 3, we discuss our data.  In Chapter 4, we present our findings.  Finally, in 

Chapter 5, we discuss our conclusions and suggest potential future efforts. 
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CHAPTER 2 

METHODOLOGY 

In this chapter we present and compare two models for offshore wind cost trends.   

There is uncertainty about how we should model offshore wind’s technological maturity.  

Thus, we create and test two models to see if either one better explains trends in offshore 

wind costs.  First, in Chapter 2.1, we discuss the emerging technology model, where we 

treat offshore wind power as a new technology in terms of learning. We begin with a 

discussion of experience curves, then we describe the methods we use to calculate the 

levelized cost of electricity and the cumulative global installed capacity. Next, in Chapter 

2.2, we discuss the hybrid technology model, and how we analyze the maturity of 

offshore wind through component technologies of varying maturity. Finally, we detail 

how we integrate expert elicitations with the learning curve models we create in Chapter 

2.3.   

 

2.1 Offshore Wind Energy Experience Curves 

Experience curves are tools that help researchers, developers, and investors 

understand how learning from the production of a product can lower that product’s cost. 

According to Ibenholt, “Such a curve shows the decline in costs of production as 

experience, and thereby learning, is gained” [8].  The curves show trends in cost as they 

relate to how much production has taken place. 

Experience curves take the form of Equation 1, where Nt is the cumulative 

number of units produced at time, t, Ct is the average cost to produce the Nt
th unit, and b 

is the index of learning.  This method uses Wright’s Model (Equation 1) and studies the 
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effects of cumulative production on costs.  Experience curves are often plotted on log-log 

plots, as the production growth rate is expected to be exponential.  As such, the curve 

plotted on a log-log plot would be a straight line with its slope equal to -b.  The index of 

learning is estimated by fitting a least-squares polynomial to the logs of the capacity and 

LCOE data.  The progress ratio, 2-b, can be used to calculate the learning rate (LR), 

Equation 2 [9,10].  The LR is the relative cost reduction, (C2N-CN)/CN, associated with a 

doubling of the cumulative production of a technology.   Figure 1 shows an example of a 

general experience curve [9]. 

𝐶𝑡 = 𝐶0 ∗ (
𝑁𝑡

𝑁0
)

−𝑏

             1 

LR = 
𝐶2𝑁−𝐶𝑁

𝐶𝑁
= 1 − 2−𝑏 2              

 

 

Figure 1: Example Learning Curves.. Two versions of the same experience curve 

showing how the cost per unit declines as more units are produced.  (a) is plotted on a 

linear scale, while (b) is plotted on a log-log scale.  The slope of the line in (b) is the 

learning rate, -b, in Equation 1 [9]. 
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We use Wright’s model to create an emerging technology model for offshore 

wind costs.  In this model, we fit the historic data to find the learning rate.  Our 

experience curves consider the levelized cost of electricity generated by offshore wind 

turbines as a function of the cumulative installed capacity.  We discuss how we calculate 

the levelized cost of electricity and cumulative installed capacity in chapters 2.1.1 and 

2.1.2 

2.1.1 Levelized Cost of Electricity 

Manwell et al. [11] suggest that three common models used to study the 

economics of offshore wind power are: simplified models, life cycle cost models, and 

electric utility economic models, each with its own strengths and weaknesses. We study 

the levelized cost of electricity (LCOE) of offshore wind, which falls under the category 

of life cycle cost models.  LCOE represents the cost of electricity necessary to recover the 

expenses of building and installing an offshore wind project.  As such, research and 

development efforts have been focused on minimizing LCOE [12].  We define LCOE 

mathematically in Equation 3, where T is the lifetime of the project, t is the year, It is the 

investment (i.e. capital cost) at time t, Ot is the operations cost, Mt is the maintenance 

cost, Ft is the interest expenditure, r is the discount rate, and Et is the energy produced in 

year t [13].  For t greater than 0, we assume It is equal to zero. 

𝐿𝐶𝑂𝐸 =
∑ (

𝐼𝑡+𝑂𝑡+𝑀𝑡+𝐹𝑡
(1+𝑟)𝑡 )

𝑇

𝑡=0

∑ (
𝐸𝑡

(1+𝑟)𝑡)
𝑇

𝑡=0

 3  

It is rare to find data on the LCOE for individual offshore wind projects in the 

literature. Most data reported in the literature take the forms of various components of the 

LCOE equation, most common of which are the capital expenditure, the capacity, and the 
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capacity factor.  For projects where LCOE was not reported directly, we use a simplified 

version of Equation 3, focusing on the capital cost as the basis for our LCOE 

calculations, and ignoring the operations and maintenance (O&M) cost, which is not 

always available.  Capital expenditures, including the cost of the turbine, support 

structure, electrical infrastructure, and installations, account for about 80% of a project’s 

total cost [14]. Our calculations take the form of Equation 4, where C is the capital 

expenditure in dollars per kilowatt, CF is the capacity factor of the project, and (A/P, r, T) 

is the capital recovery factor, given discount rate r and lifetime T, converting the quantity 

to an annual value.  The factor of 1.2 accounts for the fact that the capital expenditures 

used in our calculations do not represent the entire cost of a project. 

𝐿𝐶𝑂𝐸 = 1.2 ∗
𝐶

8760∗𝐶𝐹
∗ (

𝐴

𝑃
, 𝑟, 𝑇)  4 

The capital recovery factor, (A/P, r, T) is calculated using Equation 5 [15].  Here, 

A represents the annual value, P represents the present value, r represents the discount 

rate, and T represents the number of compounding periods.  We use the weighted average 

cost of capital (WACC) as the discount rate [16].  WACC is the minimal representation 

of a firm’s minimum acceptable rate of return (MARR) in after-tax economic studies 

[17].   We use the WACC value reported in Arwas et al. (2012) of 10% and an estimate 

of 20 years as the lifetime of an offshore wind turbine for the number of compounding 

periods  [18,19].   

(
𝐴

𝑃
, 𝑟, 𝑇) =

𝑟∗(1+𝑟)𝑇

(1+𝑟)𝑇−1
 5 

The LCOE represents a standardized price with which to compare the historical 

prices.  It is one half of the data necessary to construct an experience curve.  We describe 

the other half, cumulative installed capacity, in Chapter 2.1.2. 
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2.1.2 Global Cumulative Installed Capacity 

As discussed in Chapter 2.1, experience curves compare two key pieces of data: 

price and cumulative production.  The production data informs how many units have 

been produced at a given time.  It represents the learning that comes with producing more 

of a product.  This learning, in most cases, directly affects the price of the product, 

usually decreasing it.  For electricity, there are two possible kinds of production to 

consider, capacity and energy.  In our LCOE calculations in Chapter 2.1.1, we consider 

only the capital costs, excluding the O&M costs.  As such, cumulative capacity is the 

logical choice to represent the experience gained from production, as both cumulative 

capacity and capital expenditures represent singular actions. 

We calculate the cumulative installed capacity by summing the capacity data of 

individual projects on both regional and global scales.  Our capacity data come from the 

literature and are discussed in more detail in Chapter 3.   

To calculate the cumulative installed capacity, that is the installed capacity as a 

function of time, we define an order to the projects in the capacity summation.  We use 

project dates to order the individual projects.  Most of the data regarding dates, however, 

includes only the year the project was completed.  To order the data on a temporal scale 

finer than a year, we order the individual projects in a given year from smallest to largest.  

While this method is not perfect, it provides a consistent method for ordering the projects, 

assuming the projects become more ambitious as time goes on.   
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2.2 Effects of Maturity on Learning 

Offshore wind is a relatively new technology.  It appears to have some aspects in 

common, however, with other energy production technologies, such as onshore wind.  As 

such, offshore wind may not be a purely emerging technology and may be a hybrid 

technology with strong foundations in more mature technologies.  This may imply that 

there is less room for learning in offshore wind than in other emerging technologies; and 

that the learning is concentrated in certain components [20].   

Successful technologies tend to follow similar trends in their developments, the 

technology life cycle (TLC).  In the TLC, a technology starts as an emerging technology, 

grows into maturity, and eventually saturation [21,22]. This is illustrated in Figure 2, 

below [21].   As a technology emerges and grows, it experiences a period of exponential 

growth in its implementation.  After a certain point, however, it reaches maturity.  In this 

period, the growth in implementation of the technology slows, eventually stagnating as 

implementation of the technology becomes saturated.   
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Figure 2: Technology Life Cycle S Curve.  This plot shows how the adoption of a general 

technology is related to its development and how it can move from a new, emerging 

technology, to a more mature technology, eventually saturating its development.  It’s 

likely that onshore wind and offshore wind exist in areas of the curve before maturity, 

with onshore wind further along [21]. 

 

We assume that both onshore and offshore wind exist on TLC curves.  In Figure 

3, below, we show that both technologies are in periods of exponential growth in their 

implementations.  As such, neither technology has reached a point of maturity.  

Assuming the shape of the TLC curves are the same, however, onshore wind is much 

further along than offshore wind.  Based on the shape of onshore wind’s curve in Figure 

3, it is likely in the growing phase of its life cycle, potentially even approaching the 

maturity phase.  Offshore wind, on the other hand, is likely still in the emerging phase 

and may be approaching the growth phase. It appears to be about where onshore wind 

was in the year 2000. As such, onshore wind is more mature than offshore wind. 
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Figure 3: Expected Growths in Wind Capacities. Both onshore and offshore wind have 

experienced exponential growth in recent years.  This implies that neither technology has 

reached the point of maturity where the implementation of the technology will slow, 

along with the benefits of learning.  Onshore wind has much more installed capacity and, 

assuming the two curves have the same shape, is consequently further along its 

technology life cycle. 

 

We explore how the maturity of different components of offshore wind turbines 

affects the LCOE.  To do so, we treat an offshore wind turbine as a hybrid technology, 

separating it into two primary parts, “mature” technologies (everything above the water), 

and “emerging” technologies (everything below the water). To test this model, we treat 

the components of a wind turbine that lie above the water to be like onshore wind 

turbines, which have been in production for much longer than offshore wind turbines. 

With the exception of specific considerations for external conditions, such as 

weather, ocean stresses, and other marine environment factors, the design of offshore 

wind turbine rotor-nacelle assembly closely mirrors that of its onshore counterpart [11].  
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Analyzing the minute effects of the maturity of these individual technologies exceeds the 

scope of this thesis but may provide further insights.  The structures that support offshore 

wind turbines, however, differ significantly from those that support onshore wind 

turbines.  

There are two primary categories for offshore wind turbine support structures: 

fixed bottom, and floating.  Figure 4, below, shows a diagram of a fixed bottom turbine, 

and Figure 5 shows diagrams of three types of floating offshore wind turbine: spar, 

tension leg platform, and semisubmersible.  Figure 4 is from IEC 61400-3-1, and Figure 

5 is from IEC 61400-3-2.  IEC 61400-3-1 and IEC 61400-3-2 are international wind 

turbine standards  [23].  For this thesis, we treat the tower, platform, and rotor-nacelle 

assembly as onshore wind-like technologies.  For fixed bottom turbines, we treat the 

foundation, pile, and sub-structures as emerging technologies.  For floating turbines, we 

treat the floating sub-structures, piles, and mooring as emerging technologies [24]. 
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Rotor-nacelle assembly 

Tower 

Tower 

Sub-structure 

Platform 

Water level 

Pile 

Sea floor 

Seabed 
Pile 

Foundation 

Sub-structure 

Support 
structure 

IEC   001/09 

 

Figure 4: Parts of a Fixed Offshore Wind Turbine. This figure is from IEC 61400-3-1. 

 

Figure 5: Parts of a Floating Offshore Wind Turbine (FOWT).  From left to right: Spar, 

Tension Leg Platform, and Semisubmersible.  This figure is from IEC 61400-3-2. 
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 Our first step to examine the effects of maturity in the two component 

technologies is to understand their historical impacts.  On average, considering the 

different support structures, the mature technologies contribute roughly 40% of the 

capital cost and the emerging technologies contribute roughly 60% [25-27].  This value 

changes from year to year, as seen in Table 1 [25,28-31].  Also seen in Table 1, the 

contributions from each technology do not change much in relation to each other from 

2011 to 2017.  This may suggest that the mature technologies are learning at rates 

comparable to the emerging technologies.  We explore this idea in later chapters. 

Table 1: Historical Technology Contributions to Offshore Wind LCOE 

Year Mature Technology 

Contribution 

Emerging Technology 

Contribution 

2011 38% 62% 

2013 38% 62% 

2015 33% 67% 

2016 35% 65% 

2017 36% 64% 

 

We apply these ratios to the historical offshore wind LCOE data from 2011 to 

2017 to find the historical contributions to LCOE from the mature and emerging 

technologies (Ct,m and Ct,e respectively), as seen in Equation 6, where k is a binary 

variable representing either a mature technology, m, or an emerging technology, e, t is the 

year, Wt,k is a coefficient representing the fraction of the LCOE attributed to technology k 

in year t, and Ct,k is the portion of the LCOE associated with technology k in year t.  As 
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such, for any given t in this time period, the total LCOEt of offshore wind is the sum of 

Ct,m and Ct,e, as seen in Equation 7. 

𝐶𝑡,𝑘 =  𝑊𝑡,𝑘 ∗ 𝐿𝐶𝑂𝐸𝑡 6 

𝐿𝐶𝑂𝐸𝑡 = 𝐶𝑡,𝑚 + 𝐶𝑡,𝑒   7 

With the cost of a reference turbine in the historical time period, we then forecast 

the cost of the reference turbine for any other given time, represented as an increase in 

installed capacity, using learning curve methodology.  We again use Wright’s Method, 

Equation 1, to find projections for future values of Ct,m and Ct,e, shown in Equation 8.  

Here, t represents the year, Nt,k represents the cumulative capacity in year t for 

technology, k, and Ct,k represents the cost of production at capacity Nt,k.  The primary 

difference between the two types of technologies is the initial capacity, N0,k.  N0,m 

includes the cumulative capacities of both onshore and offshore wind energy. N0e on the 

other hand, only includes the cumulative offshore capacity.  The new capacities, Nt,k, will 

be greater than the respective initial capacities, N0,k, such that the relation in Equation 9 is 

true, where Gk,t represents the growth in technology k.  This shows the effects of learning 

from building offshore turbines, while accounting for onshore turbines that have been 

built previously.  The learning rates, bk are estimated by performing a least-squares fit on 

the logs of the capacity and LCOE data.   

𝐶𝑡,𝑘 = 𝐶0,𝑘 ∗ (
𝑁𝑡,𝑘

𝑁0,𝑘
)

−𝑏𝑘

 8 

𝑁𝑡,𝑘 = 𝑁0,𝑘 + 𝐺𝑘,𝑡 9 

With this in mind, we create a model to forecast the LCOE under an assumption 

that offshore wind is a hybrid technology, with both emerging and mature aspects.  The 

purpose here is to produce a forecast to compare with elicitations, based on an estimation 
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of what the experts would have known at the time of the elicitations.  This model 

considers both the offshore and onshore capacities in year t.  We choose 2014 as the 

reference year, t0, for our calculations as this is the most recent data at the time the expert 

elicitations took place and makes for an easy comparison between the two forecasts.  In 

this scenario, we apply the same learning rate to both technologies, rather than trying to 

estimate a learning rate from the data.  This allows us to analyze the effects the difference 

in capacities has on the learning. 

We summarize our two forecast models in Table 2, below.  In our first model, 

where we treat offshore wind as a purely emerging technology, we use 2011 as our 

reference year, t0, as this is where we begin to see the effects of learning.  The initial 

capacity and capacity growth for the emerging technology, N0,e and G0,e, are taken to be 

the global capacity of offshore wind in 2011, 3,336 MW, and the growth in capacity 

during the years following, on the order of about 1,000 MW per year.  The initial 

capacity and capacity growth for the mature technology, N0,m and G0,m, are not applicable 

in this model. 

For comparison, in our second model, where we treat offshore wind as a hybrid 

technology, we use 2014 as our reference year, t0.  The initial capacity and capacity 

growth for the mature technology, N0,m and G0,m, are taken as the globally installed 

capacity of onshore wind in 2014, 261,530 MW, and the growth in onshore wind capacity 

during the years following that, on the order of about 10,000 MW per year.  N0,e and G0,e 

in the hybrid technology model reflect growth in offshore wind only, like those in the 

emerging technology model, except for the reference year.  N0,e is taken as 7,787 MW, 
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the global capacity of offshore wind in 2014, and G0,e is taken as the growth in offshore 

wind in the years following 2014, also on the order of about 1,000 MW per year. 

For the emerging technology model, we fit historic data to estimate the index of 

learning. For the hybrid technology model, we use an assumed index of learning, -b = -

.18, to see how maturity affects cost.  This is the same index of learning we find in the 

emerging technology model. 

Table 2: Offshore Wind Forecast Models 

Variable Offshore Wind as an 

Emerging Technology 

Offshore Wind as a 

Hybrid Technology 

t0 2011 2014 

N0,e (MW) Offshore wind capacity: 

3,336 

Offshore wind capacity:  

7,787  

N0,m (MW) N/A Onshore wind capacity: 

261,530 

Ge,0 (MW/year) Growth in offshore wind 

capacity: O(~1,000) 

Growth in offshore wind 

capacity: O(~1,000) 

Gm,0 (MW/year) N/A Growth in onshore wind 

capacity: O(~10,000) 

 

2.3 Expert Elicitation Comparison 

Expert elicitations aggregate expert opinions and are crucial when data is sparse, 

as they can fill in knowledge gaps [32].  Offshore wind is a young technology, compared 

to traditional energy production technologies, such as coal and oil. By comparing the 

historical data of our experience curves with the predictive data of expert elicitations we 

further expand our data set and can better understand the trends we see in offshore wind 

LCOE as well as the drivers of those trends.   
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We build a figure like Figure 1 in Nyqvist et al. (2015), shown below as Figure 6 

[7].  In their paper, Nyqvist et al. compare historical LCOE data of lithium-ion battery 

packs for battery electric vehicles (BEV) with expert elicitations of future LCOE values.  

Similarly, we combine historical data for offshore wind LCOE with expert elicitations of 

the future of offshore wind LCOE collected by and presented in Wiser et al. 2016 [12]. 

 

Figure 6: Example Learning Curve and Expert Elicitation. A marriage of backward-

looking historical data and forward-looking expert elicitation data, taken from Nyqvist, et 

al. (2015).  The blue and green crosses and circles represent historical data.  The black 

line and blue and green dashed lines represent log fits of the historical data. The yellow 

triangles represent expert elicitations.  By comparing the historical and forward-looking 

data sets, researchers can better understand both and draw better conclusions from their 

data. 
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CHAPTER 3 

DATA 

In Chapter 3, we describe our data.  We begin by discussing the sources of our 

data for the turbine experience curves.  In Chapter 3.1 we discuss the data we use to 

construct the offshore wind learning curve, where we treat offshore wind as an emerging 

technology, and in Chapter 3.2, we discuss the data we use to construct the alternative 

learning curve, where we consider offshore wind to be a hybrid technology.  This is 

followed by describing data collection for the expert elicitations, Chapter 3.3.    

 

3.1 Offshore Wind 

Our data, for the offshore wind experience curve, come from various reports, 

papers, and institutions.  They represent the history of offshore wind and span several 

regions but reside primarily in Europe.  Table 3 lists the offshore wind data sources, the 

years, countries, and number of projects they cover, and the data they provide. 
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Table 3: Offshore Wind Data Sources 

Source Years Data Locations Number of 

Projects 

Smith, et al. 

(2015) [33] 

2000-2015 Capital 

Expenditure, 

Capacity Factor, 

Capacity 

UK, Germany, 

Denmark, 

Belgium, 

Netherlands, 

Sweden, Japan, 

Finland, Ireland 

41 

MacGilivray, et 

al. (2014) [34] 

2000-2012 Capital 

Expenditure 

UK 

Denmark 

21 

van der Zwaan, 

et al. (2012) [35] 

2000-2008 Capacity 

Capital 

Expenditure 

Europe 11 

Hawila, et al. 

(2017) [36] 

2010-2017 Cumulative 

Capacity 

LCOE 

Denmark, China, 

UK, Italy, 

Netherlands 

9 

Remy, et al. 

(2018) [37] 

2017 Capacity UK, Germany, 

Belgium, 

Finland, France 

17 

4C Offshore [38] 2015-2016 Capacity Germany, UK 15 

 

Some of the capacity factor and capital expenditure data in Smith et al. (2015) 

lacks information regarding the location of the wind farm.  This is illustrated in  

4, below, as a sample of the data supplied in the paper [33].  In these cases, we 

assume that these projects refer to projects reported in that paper’s capacity data, and 

using the years associated with the projects, we match the country-ambiguous capacity 

factor and capital expenditure data with the capacity data.   To be consistent, we assume 

the smallest projects, in terms of capacity, have the largest capital expenditure and the 

smallest capacity factor.  This assumption models building larger projects where the 

resources are more prevalent, thus maximizing the electricity production. 
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Table 4: Smith Data Ambiguities Sample 

Country Commercial Operation Data 

(year) 

Capacity Factor 

United Kingdom 2017 33% 

United Kingdom 2017 37% 

Other 1997 26% 

Other 2000 34% 

Other 2001 18% 

 

 

3.2 Onshore Wind 

To conduct analysis into the effects of component maturity, we use capacity data 

for both onshore and offshore wind from 2011 until 2017 [39,40]. These capacities are 

listed in Table 5 for both onshore and offshore capacities. As the table shows, the global 

installed capacity for onshore wind is much larger than that of offshore wind, 32 times 

larger in the most recent years. We also note that onshore wind capacity is growing faster 

than offshore wind in terms of magnitude.  From year to year, onshore wind capacity 

grows on the order of 10,000 MW while offshore wind capacity grows on the order of 

1,000 MW.  Compared to their capacities in 2011, however, offshore wind has seen more 

relative growth, experience almost a 5-fold increase compared to onshore wind’s 2.7-fold 

increase in the same time span.   
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Table 5: Historical Capacities for Onshore and Offshore Wind 

Year Onshore Wind Power 

Capacity (MW) 

Offshore Wind Power 

Capacity (MW) 

2011 147,960 3,336 

2012 177,750 4,034 

2013 216,190 6,269 

2014 261,530 7,787 

2015 292,630 12,685 

2016 340,610 14,138 

2017 405,020 16,557 

 

We then use the historical estimates of LCOE contribution from the mature and 

emerging technologies and learning rates we establish from our experience curve to 

forecast the future contributions.  

 

3.3 Expert Elicitation 

To create our analog to Figure 6, we use backward-looking historical data and 

forward-looking expert elicitation data.  We use the data we have gathered for the turbine 

experience curves, described in Chapters 3.1 and 3.2, for historical data.  For the expert 

elicitation data, we use data collected by Wiser et al. (2016) [12]. They conducted expert 

elicitations on the LCOE of wind power, both onshore and offshore, eliciting responses 

from 163 experts in the wind energy field.  Included in their data are 110 expert 

responses regarding the LCOE of fixed bottom offshore wind turbines and 44 expert 
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responses regarding the LCOE of floating offshore wind turbines.  This study emphasized 

costs in 2030 [12]. 

Between October 2015 and December 2015, the experts submitted predictions for 

the LCOE of onshore, fixed bottom offshore and floating offshore wind turbines for 3 

years: 2020, 2030, and 2050.  For each of these years, the experts predicted three LCOEs: 

a high, a median, and a low (90th percentile, 50th percentile, and 10th percentile 

respectively).  Thus, we have 154 estimates for offshore wind LCOE for three years and 

three scenarios, resulting in almost 1400 data points. 

 

  



 

23 
 

CHAPTER 4 

RESULTS AND ANALYSIS 

In this chapter, we detail our results.  In Chapter 4.1, we discuss results from the 

experience curve analysis, in Chapter 4.2, we discuss results from the maturity analysis, 

and finally, in Chapter 4.3, we discuss results from the expert elicitation comparison. 

 

4.1 Emerging Technology Model 

In this chapter, we build two global experience curves for offshore wind turbines, 

Figure 7 and Figure 8.  Figure 7, in Chapter 4.1.1, is the global experience curve with all 

the projects aggregated by the year they were completed and weighted by the capacity of 

the farm, from 2000 to 2017, for a total of 18 data points. That is, we show only the total 

capacity and the average cost for each year.  In Figure 8, shown in Chapter 4.1.2, we 

show each individual project, plotting LCOE and global cumulative installed capacity for 

each.    

 

4.1.1 Aggregated Data 

Figure 7 shows a slight decrease in LCOE in the early period, from 2000 until 

about 2003.  This early trend coincides with the expected effects of benefitting from 

learning by doing [9].  From 2003 until about 2011, however, the LCOE of offshore wind 

turbines increases.  This increase contrasts with the expected effects of learning by doing.  

Smith et al. (2015) has also made note of the increasing trend in offshore wind 

LCOE prior to 2011.  They suggest that it is due to factors such as installing turbines 

further from shore and in deeper waters, shortages in the supply chain, including 
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components, vessels, and skilled labor, increasing prices for commodities, and more 

conservative pricing strategies on the part of equipment suppliers and installation 

contractors [33].   Offshore wind is not the only industry to experience negative learning 

during the early phases of development.  The nuclear industries of both France and the 

United States saw increases in electricity costs during early development [41].  On a 

global scale, the same can be said for gas turbine combined cycle power plants [42].  

 

Figure 7: Global Offshore Wind Learning Curve.  The upward trend from 2003 to 2011 

implies that the cost of electricity produced by offshore wind turbines is increasing, 

despite the benefits of learning, potentially due to installing turbines further from shore.  

After 2011, the benefits of learning appear to take effect, beginning to reduce the LCOE 

of offshore wind power, shown here in the orange circle. 

 

The period of negative learning is followed by a period of positive learning.  

From 2011 until the most recent data, 2017, the data points circled in orange, the LCOE 

of offshore wind power decreases, following the expected trend of learning by doing, 

suggesting the industry is finally reaping the benefits of learning.  During this period, the 

learning rate is 12.4%, meaning that for every doubling of capacity we expect a reduction 
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in cost of 12.4%.  For comparison, according to Nagy et al., the learning rate for onshore 

wind from 1984-2005 was 12% [43]. This implies that offshore wind is following a 

trajectory very similar to that of onshore wind.  

 

4.1.2 Disaggregated Data 

To better understand the trends in LCOE of offshore wind, we plot the LCOE of 

the individual projects against the cumulative globally installed capacity and superimpose 

the global trend for comparison, Figure 8. By not aggregating the data, we have more 

data points to examine.  In addition to this, by grouping the projects by country, we can 

examine regional trends as well as the general global trend.   

 

Figure 8: Comparison of Global Offshore Wind Learning Curve with Region Specific 

Data.  The overall global trend seems to follow the aggregate trend (black dots), apart 

from some outliers, but the individual regional trends appear to have slightly more 

scatter, suggesting that learning is more consistent on a global scale than it is on a 

regional one.  The individual projects are scaled by the size of the project such that larger 

symbols represent larger capacity projects.  The largest projects appear to drive the global 

trends.   
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Figure 8 shows the same initial decrease in LCOE that Figure 7 showed.  Unlike 

Figure 7, however, Figure 8  shows that this trend is made up of only five data points, 

three of which belong to Denmark.  The subsequent increase and decrease of LCOE, after 

2003 and 2011 respectively, however, are supported by most of the data. We also note 

that China and Japan appear to be outliers compared to the rest of the countries.  Due to 

the small size of these projects, denoted by the relative sizes of the markers, however, in 

comparison with the total capacity in the years they were built, the effects of removing 

these outliers results in less than a 5% difference in LCOE.   

Our results show that, on a global scale, the LCOE of offshore wind increased 

from 2003 to 2011 and decreased from 2011 until present.  Regional trends, such as that 

seen in the UK, however, do not necessarily follow the global trend.  The benefits of 

learning do not appear in the UK until 2013, two years after the global shift from 

negative to positive learning.  In fact, no country exactly follows the global trend.  This 

may suggest that learning is more consistent on a global scale than it is on a regional one, 

potentially due to delays in knowledge spillover from country to country. 

The capital costs, which are proportional to the LCOE, increase from 2003 to 

2011. Some factors that increase the capital costs should also increase the capacity factor, 

potentially lowering the LCOE [33].  For example, wind resources are more plentiful 

further from shore.  On average, the winds are faster and more consistent.  However, the 

costs of building and maintaining turbines also increases as the distance from shore 

increases [44], countering the benefits of increasing the capacity factor, we explore this 

more in Chapter 4.1.3.   
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4.1.3 Relationship Between LCOE and Capacity Factor 

As stated in the previous chapter, LCOE is very closely related to capacity factor.  

Increasing the capacity factor of an offshore wind turbine allows operators to produce 

and sell more electricity, ideally lowering their costs [45].   

In Figure 9, we examine the relationship between LCOE and capacity factor.  We 

use capital expenditure as a stand in for LCOE as it is the primary factor in our 

calculations as described in Chapter 2.  We find, on a global scale, there is no meaningful 

correlation between capital expenditure and capacity factor.   On a regional scale, 

however, we find stronger correlations.   These correlations are listed in Table 6.  Some 

regions likely have access to stronger or more easily accessible wind resources.  This 

would lead to smaller capital expenditures for similar capacity factors, essentially 

smearing the correlations across the capital expenditure axis when comparing across the 

globe. 
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Figure 9: Comparing Capital Expenditure and Capacity Factor.  There is no meaningful 

correlation between capacity factor and capital expenditure on the global scale.   

Regionally, however there appears to be stronger correlations. 

Table 6: Correlations Between Capital Expenditure and Capacity Factor 

Country Correlation Coefficient 

China .74 

UK .60 

Denmark .76 

Belgium  .71 

 

The relationship between the capacity factor and the capital cost is multi-faceted.  

As stated previously, developers have begun installing turbines further from shore to take 

advantage of the greater and more reliable wind resources, which should increase 

capacity factor by allowing the turbines to run at or near capacity more often [44].  In 

addition to this, since 2000, the average rotor diameter on offshore wind turbines has 
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nearly tripled [46]. The trend of increasing rotor diameter can increase the maximum 

power a turbine can generate, but it can also increase operations costs. Longer blades can 

have larger deflections from flapwise forces and put more stress on their components 

[47]. Excess stress can lead to more maintenance, and subsequently down time to 

perform the maintenance, and thus a lower capacity factor [48].   

Regionally, the potential increase in capital costs is not without benefit, however. 

As the rotor sizes increase and developers take advantage of the wind resources further 

from shore, the increase in generation has the potential to outweigh the costs. The 

relationship between rotor size and power generation is not linear.  The available wind 

power is given by Equation 10, where cp is the rotor’s power coefficient, ρ is the density 

of the air, A is the area swept by the rotor, U is the wind speed, 𝜇𝑚 is the mechanical 

efficiency, and 𝜇𝑒 is the electrical efficiency [11].   

𝑃 =
1

2
∗ 𝑐𝑝 ∗ 𝜌 ∗ 𝐴 ∗ 𝑈3 ∗ 𝜇𝑚 ∗ 𝜇𝑒  10 

 The power available in wind is proportional to the swept area, which is 

proportional to the square of the radius of the rotor.  As such, an increase in rotor 

diameter will result in an even larger increase in the swept area, and thus the power.  It 

can also be seen from Equation 10, that the available power is proportional to the cube of 

the wind speed, thus enticing developers to install wind turbines further from shore where 

the wind speed is greater.    Wind turbines are limited by the capacity of the installed 

generator.  As such, stronger winds may not necessarily produce the maximum of the 

power available in the wind.  These stronger winds are likely more reliable, however, 

thus allowing the turbines to operate near capacity for a greater percentage of time, thus 

producing more electricity and lowering costs. 
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On one hand, increasing the capital expenditure of projects can result in higher 

capacity factors on a regional scale.  This allows the turbines to produce more electricity, 

but it also has to compete with the maintenance required to keep the turbines in working 

order.  Increasing the capacity factor of offshore wind turbines is vital to ensuring 

offshore wind’s ability to compete with established energy technologies and could 

contribute to lowering the per MW cost of offshore wind.   

 

4.2 Hybrid Technology Model 

The results in Chapter 4.1 assume the offshore wind is purely an emerging 

technology, with all its components learning rapidly, Equation 1.  As stated previously, 

offshore wind may be a hybrid of mature and emerging technologies.  To explore this 

concept, we apply the learning rate methodology to the different types of technology.  

The technologies are at different points in their respective experience curves and thus will 

have different values for installed capacity.  We assume learning in the emerging 

technologies is based solely on the cumulative installed capacity of offshore turbines.  On 

the other hand, we assume the learning in the mature technologies is based on the sum of 

the cumulative installed capacities of both offshore and onshore wind turbines, which is 

significantly larger, Equation 8.   

 In Figure 10, we explore some of the differences between the emerging and 

hybrid technology models summarized in Table 2 . The higher lines show forecast 

LCOEs for the emerging part of offshore wind. The blue line is the emerging technology 

model and the yellow line is the hybrid technology model. The emerging technologies 

behave similarly in both models.  Recall, the primary difference between these models is 
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the cumulative capacities of the mature and emerging components of offshore wind, the 

sum of offshore and onshore wind capacities for the hybrid technology model and solely 

the capacity of offshore wind for the emerging technology model.  The models also start 

at different reference years, 2011 for the emerging technology model and 2014 for the 

hybrid technology model.    

The disconnects in the blue and red lines are artifacts of switching from historical 

to forecasted data. In the blue line, the LCOE of the emerging components in 2017 (the 

last point in the first part of the line) is less than what is expected from the fit used for the 

forecast (the first point in the second part).  The red line, on the other hand, has a slightly 

higher LCOE than would be forecast from the fit.  The yellow and purple lines do not 

have disconnects as these lines are fits to a hypothetical scenario. 

The mature portions, the red and purple lines, behave very differently from each 

other from model to model.  In the hybrid technology model, the mature technologies 

show slower learning in response to a much larger cumulative capacity, the sum of 

offshore and onshore cumulative capacities.  The contributions from the mature and 

emerging technologies in the hybrid model approach each other in the later years, as the 

emerging technologies transition to mature technologies.  The red line does not 

experience the same deceleration of learning because we consider its cumulative capacity 

to be solely that of offshore wind.  Its shape is a result of being treated as an early 

emerging technology. 
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Figure 10: Contributions to LCOE From Component Technologies in the Emerging and 

Hybrid Technology Models.  In the emerging technology model, the two component 

technologies behave like emerging technologies.  In the hybrid technology model, the 

two technologies behave differently and approach each other in the later years. 

 

To fully understand how the behavior of the mature technologies affects the 

LCOE of offshore wind, we plot the learning curves for the emerging technology and 

hybrid technology models in Figure 11.  Here, the black line represents the emerging 

technology model and the blue line represents the hybrid technology model.  The black 

crosses represent historic offshore wind LCOE data.   In either case, the line is the sum of 

contributions to offshore wind LCOE from the mature and emerging technologies 

described in Equation 7.  The hybrid technology model predicts less learning than the 

emerging technology model.  This is because the hybrid technology model assumes the 

learning experienced by the mature technologies will slow, especially in comparison to 

the emerging technologies.  The emerging technology model assumes the entire 

technology is emerging, and thus has higher overall learning. 
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Figure 11: Comparing Learning in Emerging and Hybrid Technologies. The blue line 

represents the hybrid technology model and the black line and crosses represent the 

emerging technology model.   

 

 

4.3 Expert Elicitation Comparison 

To better understand the potential future trends of offshore wind power prices, we 

create a robust and extensive data set, marrying historical data with forward looking 

expert elicitations. We compare our forecasts of offshore wind LCOE from the emerging 

technology and hybrid technology models (the historical data) with the forward-looking, 

expert elicitation data.  Figure 12 maps the passage of time to the evolution of LCOE.   
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Figure 12: Comparing Offshore Wind Learning Curves with Expert Elicitations.   The red 

rings represent historical offshore wind projects built prior to 2011. The red circles 

represent historical offshore wind projects built after 2011.  The size of the circle or ring 

represent the relative size of the project.  The black crosses represent global average 

LCOE after 2011 and the black line is an exponential fit to that data (emerging 

technology model). The green line is the hybrid technology model. The blue crosses, 

orange triangles, and yellow dots represent expert elicitation data for 90th, 50th, and 10th 

percentile expert elicitation scenarios, respectively.  The blue, orange, and yellow lines 

represent exponential fits to the mean of the three expert elicitation scenarios. 

 

The red rings represent historical offshore wind projects built prior to 2011.  The 

solid red circles represent historical offshore wind projects built after 2011.  In either 

case, a larger ring or circle represents a larger project in terms of capacity.  The black 

crosses represent average global LCOE for offshore wind and the black line is an 

exponential fit to this data, the emerging technology model.  The green line represents the 

hybrid technology model described in Chapter 4.2. 

The blue crosses, orange triangles, and yellow dots represent expert elicitation 

data in 10th, 50th, and 90th percentile forecasts for fixed bottom wind farm LCOE 
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respectively. Note that the experts were forecasting a “typical” or median wind farm.  

The blue, orange, and yellow lines are exponential fits of the mean of each of the three 

scenarios.   

There are two important things to note.  First, after 2030, both the black historical 

curve and the green historical curve lie below all three of the averaged elicitation curves.  

Our models predict lower LCOE than the average expert.  Second, the black curve 

appears to decrease more quickly than any of the colored curves.  This implies that the 

historical learning trends are more prominent than the average expert would expect.   

In both models, the experience curve generated from historical data predicts more 

learning and lower LCOE than the averages of the expert elicitations.  However, our 

emerging technology model LCOE prediction for 2020 lies between the mean of the 10th 

and 50th percentiles of the expert predictions.  The hybrid technology model is very close 

to the mean of the 50th percentile of the expert predictions for 2020 and does not fall 

below the mean of 10th percentile expert prediction until after 2030.  The fact that the 

hybrid technology model matches more closely with the expert elicitation data may 

suggest that they also considered parts of offshore to be subject to mature learning.  

Another potential explanation of the discrepancies between our models and the 

expert elicitation data is that the experts were asked to predict LCOE for a “typical”, or 

median, turbine.  It is possible that the data used to construct our historical models 

represents turbines in the “best” locations, those that are easiest to build in or have the 

strongest resources.  If this is the case, our models predict the lower bound of offshore 

wind LCOE and the true values would likely be higher.  A deeper analysis of this is 

difficult as turbines closer to shore are less expensive to construct but have access to less 
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reliable wind resources than turbines built further from shore, and thus are likely to 

produce less electricity.  As such, studying the costs and benefits of turbine placement 

could provide further insight into LCOE predictions but exceeds the scope of this thesis. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDED FUTURE WORK 

The results of this study are promising for the future of offshore wind power.  

Offshore wind power is expected to decrease in cost across all models.  As offshore wind 

LCOE continues to decrease, it will become easier for policy makers to promote it as a 

decarbonization strategy. Offshore wind power shows strong potential as a promising 

green energy investment and an affordable power source.   

While our emerging technology model does not match the projections of the 

experts elicited in Wiser et al., the discrepancy is not the end of the story, especially 

considering that our hybrid technology model projection lies well within the lower half of 

the experts’ projections.  Historically, offshore wind LCOE has been decreasing faster 

than experts had anticipated.  We do not know the full set of assumptions each expert 

forecasted under, or how these assumptions played out.  It would be interesting to see if 

this phenomenon is unique to offshore wind or if it appears in other technologies. 

 Historical trends in offshore wind suggest that it is behaving like an emerging 

technology.  As such, it is possible that, while onshore wind has significantly more 

cumulative capacity than offshore wind, components shared between the two 

technologies may still benefit from learning.  Or, perhaps there is little spill over between 

offshore and onshore wind, meaning learning takes place independently in the two 

technologies.  Finally, a likely explanation is that learning is at the system level, with 

important interactions between the components. Future efforts could help explain the 

similarities and differences in the two technologies.   
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The full set of projections, consisting of our emerging and hybrid technology 

models and the experts’ LCOE projections, serves as bounds on the expected LCOE of 

offshore wind and creates a robust dataset from which decisions regarding investment 

and support for offshore wind can be made.  This data set provides policy makers and 

researchers with a rich resource to draw from as new studies and policies are developed.   

Additionally, the benefits of learning from developing and producing a 

technology are not as simple as assuming that every piece of the technology develops in 

unison.  While this complexity adds some uncertainty to the conversation, it also provides 

opportunity for further learning and advancement through specialization in production of 

various technologies that go into offshore wind farms. 

More work can be done, however, to further understand the trends and drivers 

behind the cost of offshore wind power.  We present a best-case scenario where every 

piece of the offshore turbine benefits from learning, as well as a broad look into how the 

maturity of different technologies within the turbine can affect the benefits of learning.  

Deeper studies should be conducted to look for correlations between learning, and, 

consequently, prices, of specific technologies that comprise offshore wind farms beyond 

the broad categories of mature and emerging.   
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